
AI-ENABLED PERFORMANCE ENHANCEMENT & ASSURANCE SERVICES

Leading Services Firm for the Global Cement Industry

Celebrating 57 years of Customer Satisfaction

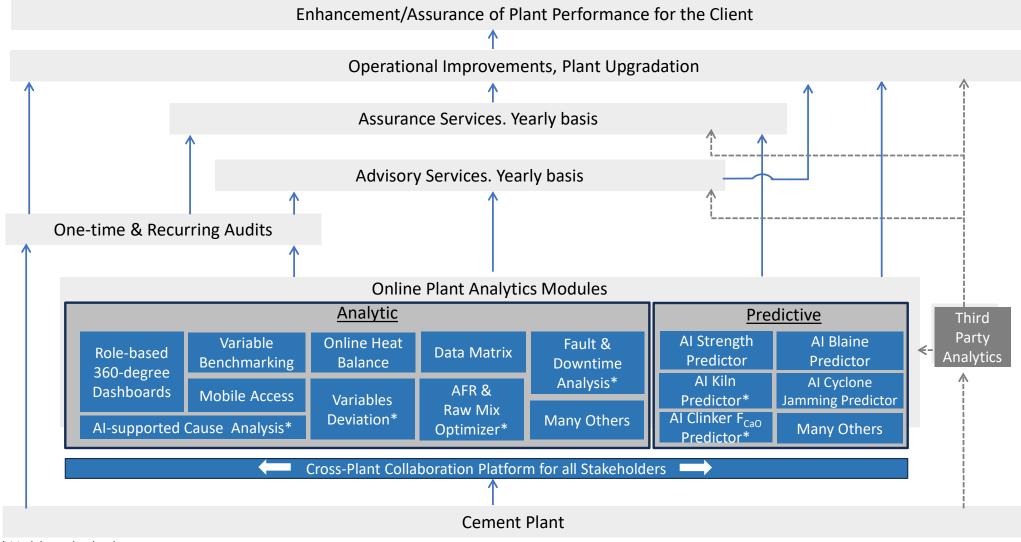
HOLTEC

• Created in year 1967

HOLTEC

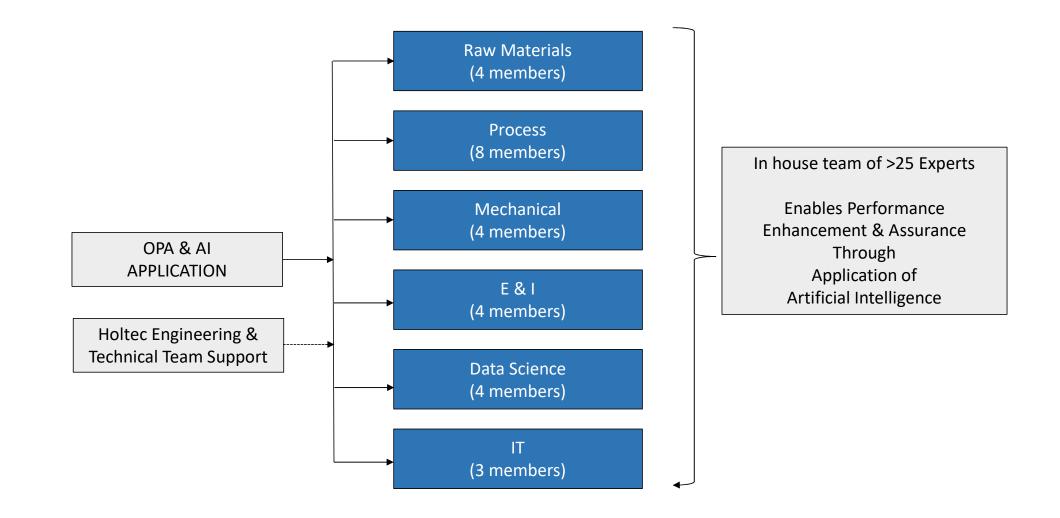
- Services firm focused on the Global Cement Industry: Advisory, Engineering, Plant Operations & Maintenance, Solutions
- Also offer services in Highways, Power & Engineering Support Services
- 4,800+ assignments for 1,000+ clients in 100+ countries
- Full fledged engineering and business consulting firm
- Strong execution processes (ISO certified)
- Total Solutions: Integrated service from concept through commissioning and operations
- Industry expertise with 6,500 man-years experience
- Extensive database built over 55+ years
- Offices: 3 in India, 1 in UAE (Sharjah) and various other site offices

HOLTEC delivers comprehensive, end-to-end solutions tailored for the global cement industry


EXPERIENCE IN THE GLOBAL CEMENT INDUSTRY

- 57 years of Service to 1000+ Clients Spread Over 100+ Countries
- 255+ New Cement Lines and Major Plant Upgradations
- 1,200+ Plant Modification Assignments
- 300+ Plant Audits & Performance Enhancement Assignments
- 4+ Online Plant Analytics & AI Solution Assignments
- 600+ Raw Material Investigation & Environment Assessment Assignments
- 140+ Captive Power Plant Assignments
- 70+ Waste Heat Recovery Plants
- 35+ Alternate Fuel Engagements

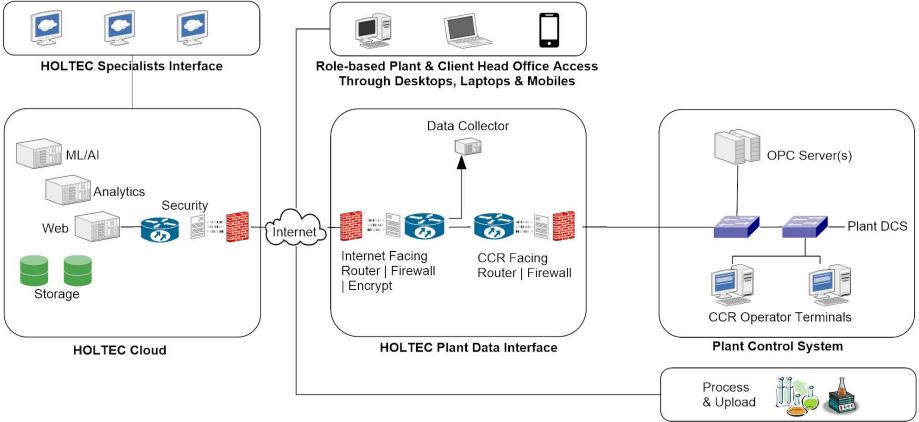
Our USPs, among others, include our Global Experience/ Access, Integration of our Multi-Disciplinary Expertise and Technological Contemporariness


AI-ENABLED PERFORMANCE ENHANCEMENT & ASSURANCE SERVICES

* Modules under development

PERFORMANCE ENHANCEMENT & ASSURANCE

PHILOSOPHY : ONLINE PLANT ANALYTICS AND AI


<u>Online Plant Analytics</u> is a Service provided for <u>Performance Enhancement & Assurance</u> using <u>Big-Data Analytics</u>. This is being increasingly enabled through implementation of AI, by <u>transforming Human Intelligence into computer algorithms</u>, for its own learning & to deliver solutions, precisely.

The capturing, monitoring and <u>analysis of Online Data</u> is towards <u>achieving optimized &</u> <u>stable operations on a long-term basis</u>, regardless of changes in inputs and operating conditions (Men, Machines, Materials, Milieu, etc).

This is effected by continuously subjecting plant data to <u>advanced analytics & AI-enabled</u> <u>systems</u> to facilitate an <u>Industry 4.0 approach</u> towards conceiving and unleashing Performance Enhancement & Assurance.

SYSTEM ARCHITECTURE FOR OPA & AI IMPLEMENTATION

Lab & Offline Data

		Numb	per of Tags for a Typical P	lant ~ (Total : 10),000)	
Tag Type	OPC	Lab & Offline	Alarm/ Faults (Virtual)	Calculated	Site Constants	Periodically Measured
~ Nos	1,500	100	8,000	220	100	80

IMPLEMENTATION APPROACH

Potential Assessment Study

- Preliminary assessment
- Collection of base line / past data
- Identifying improvement opportunities
- · Identify areas that need regular monitoring for assured performance

Contract Finalization

- OPA Contract signing
- Agreement on improvement & assurance areas
- Agreed Terms & Conditions

OPA System Setup

- Online data capturing mechanism
- Data stabilization and mapping
- Formulation of AI/ML models & Optimization Tools

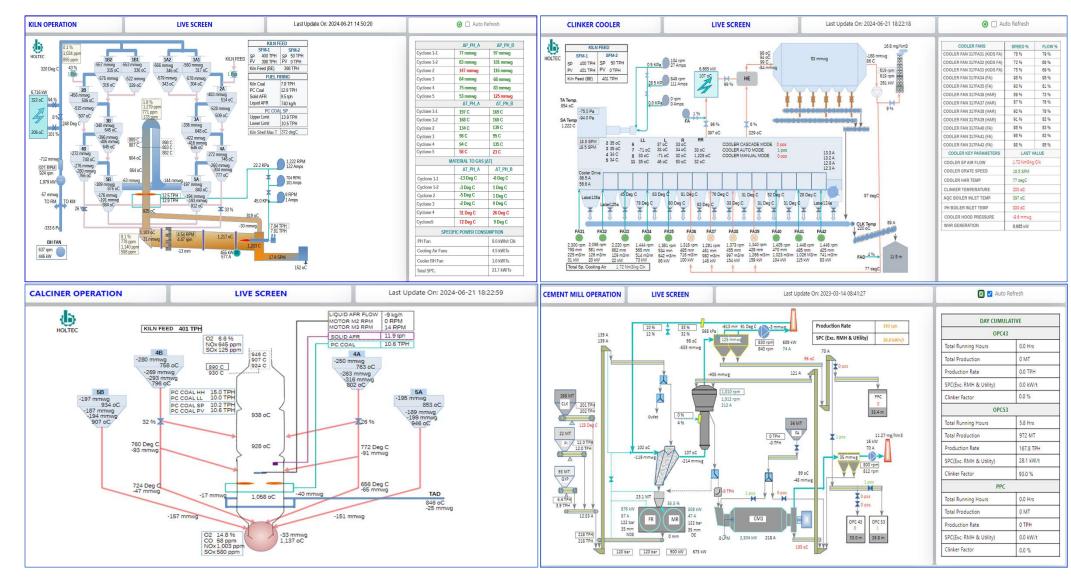
Performance Enhancement & Assurance Through Long Term Association

Holtec Intervention

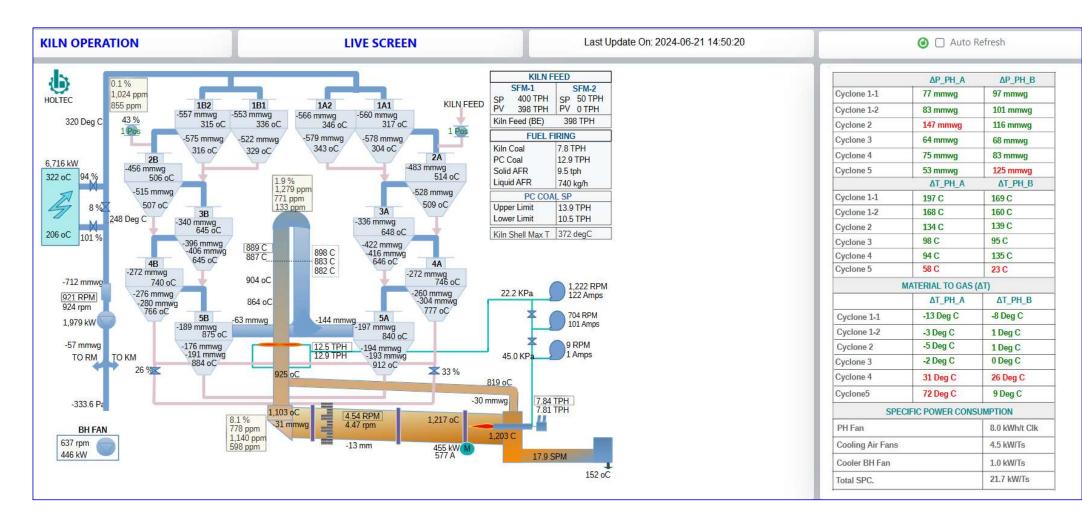
- Activation of AI/ML based model/ tools
- Prescribing key variables/ Optimized range
- Recommending improvement measures

Sustainable Operation

- Supporting critical modification
- Periodic performance review
- Intermediate process study
- Experience sharing with Plant team
- Applying cost optimization models



APPLICATION OF AI/ML FOR PERFORMANCE ENHANCEMENT & ASSURANCE



DIGITAL TWINS

DIGITAL TWINS : PREHEATER & KILN

ANALYTICS DASHBOARDS

PROCESS	VAR	ABLE	S ASS	ESSM	ENT						HO	JRLY	DATA	4			Date:	2024-1	03-09			Refr	esh				Reaso	ns for Variable	s deviation		Last Update On- 2024-03-09 14:26:38
HOURLY AVERAGE		_	_		_																				T						
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	2 23	3	Optimized Range @ 6000 TPD	VARIABLE	UNITS	OPTIMUM LIMIT	CURRENT VALUE	REMARKS
Kiln feed Total (TPH)	403	403	403	403	404	405	405	405	405	405	405	404	405	400	399	407	409	412	412	410	409	410	409	410		400-410 tph					
Kiln Coal FB (TPH)	8.0	7.9	8.0	7.7	7.7	7.7	7.8	7.8	7.8	7.8	7.8	7.8	7.9	7.9	8.2	7.6	7.4	7.5	7.3	7.5	7.4	7.5	7.5	7.5		7.0-8.0 tph					
PC_FCoal_FB (TPH)	11.8	11.5	11.4	11.7	11.9	12.0	12.3	12.6	11.6	11.5	11.8	13.9	14.5	13.7	13.7	11.3	12.3	12.5	11.6	11.8	11.8	11.7	11.7	11.6		11-14 tph	Kiln Feed	TPH	395	395.0	Normal Operation
Solid AFR (tph)	8.2	9.5	9.7	9.5	9.0	9.0	6.5	7.6	9.5	9.4	8.4	4.2	0.0	0.0	1.2	9.7	9.3	8.1	9.8	9.8	9.8	9.9	9.7	9.8		8-12 tph					
Liquid AFR (kg/h)	608	553	612	683	578	185	-121	-120	-121	-121	-31	-8	-9	-9	340	1,839	881	876	791	872	943	904	842	798	8	500 - 800 kg/hr	Preheater outlet temperature	Deg C	310	315.0	high PC CO(1101.0)
KL_RPM_FB (rpm)	4.52	4,54	4.54	4.54	4.54	4.57	4.59	4.59	4.59	4.59	4.59	4.59	4.59	4.50	4.56	4.64	4.64	4.64	4.64	4.64	4.64	4.64	4.63	4.64	E.	4.50-4.70 rpm	-				
KL_MD_Cur (A)	637	659	685	652	638	662	662	646	651	641	628	632	659	626	644	632	606	624	639	654	641	635	616	635		560-650 Amps					
Kiln Inlet Temp (oC)	1,121	1,126	1,131	1,110	1,117	1,125	1,123	1,119	1,121	1,117	1,111	1,102	2 1,114	1,110	1,122	1,111	1,103	1,111	1,108	1,122	1,113	1,121	1,11	5 1,118	8	1110-1150 deg C	SA Temperature	Deg C	1190	1,132.0	Cooler Kids Fans Flow (961.0) low
KL_SA_T (C)	1,225	1,220	1,221	1,226	1,218	1,210	1,197	1,199	1,212	1,169	1,173	1,178	3 1,192	2 1,175	1,185	1,220	1,213	1,201	1,209	1,225	1,216	1,222	1,22	6 1,200	18	1190-1250 deg C					
BZ temp (oC)	1,326	1,285	1,301	1,292	1,318	1,322	1,289	1,284	1,284	1,285	1,260	1,259	1,253	1,227	1,291	1,288	1,264	1,266	1,266	1,298	1,282	1,298	3 1,30	1,287	17	1200-1350 deg C	BZ Temperature	Deg C	1200	1,297.0	Normal Operation
PH_Fan_RPM_FB (rpm)	910	910	910	910	910	910	910	910	906	905	905	904	899	896	900	909	905	907	910	910	910	910	910	910		900-915 rpm		5			
PH_OL_Temp (Deg C)	306	308	309	308	307	307	307	308	308	307	308	308	308	308	309	310	310	310	307	308	308	306	307	309	8	300-315 deg C					
PC Outlet gas temp avg (C)	885	887	889	883	879	880	879	879	880	882	880	874	882	888	884	883	876	875	874	872	872	872	873	874	i.	870-890 deg C	TA Temperature	Deg C	920	965.0	Normal Operation
Tertiary Air Temp (oC)	982	975	971	996	968	953	936	934	947	958	953	922	937	947	916	980	969	946	966	960	970	968	984	964		920-990 deg C					
CLR Mid Air Temp (oC)	372	371	370	396	386	362	366	363	362	382	392	368	366	386	369	390	393	380	387	372	386	375	379	376		360-390 deg C	Midair Temperature	Deg C	375	365.0	Normal Operation
Hood draft PV (Pa)	-70	-72	-69	-71	-69	-75	-71	-70	-70	-70	-71	-70	-71	-70	-77	-70	-71	-70	-70	-71	-76	-80	-80	-81		-60 to -75 pa				1.0000	
Sp. Cooling Air (Nm3/kg Clk)	1.72	1.69	1.71	1.60	1.64	1.67	1.65	1.67	1.67	1.66	1.63	1.66	1.67	1.62	1.69	1.66	1.65	1.64	1.62	1.68	1.64	1.65	1.65	1.62		1.63 - 1.70 nm3/kg clk					
Cooler Grate SPM FB (SPM)	19.60	19.60	19.60	19.61	19.61	19.61	19.60	19.61	19.61	19.61	19.61	19.61	19.60	18.55	18.21	21.48	21.61	21.61	21.61	21.61	20.77	19.61	19.6	0 19.61		18 - 20 spm	Clinker Temperature	Deg C	150	74.0	Normal Operation

ANALYTICS DASHBOARD : KEY VARIABLES DEVIATION

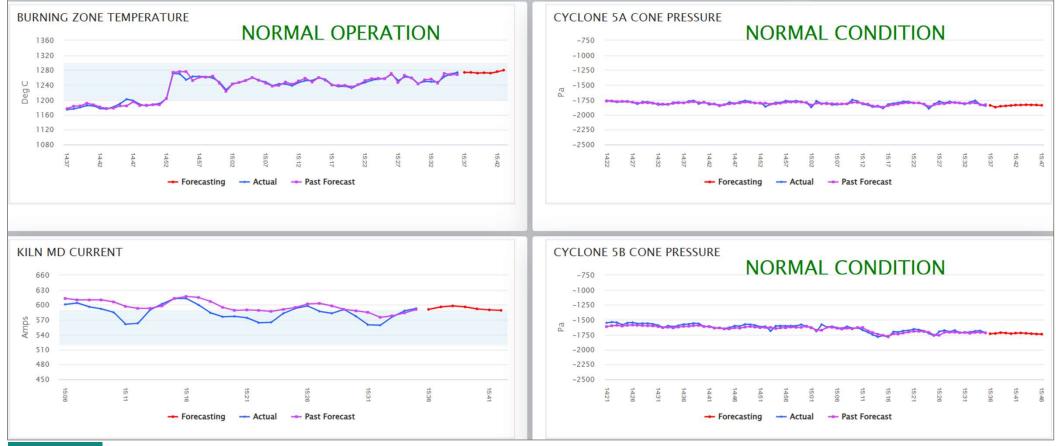
PROCESS \	/ARI/	ABLE	S AS	SESS	MEN	Т					HOU	RLY [DATA	L.			Date:	2024·	03-09			R	lefresh		
HOURLY AVERAG	iΕ																								
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Optimized Range @ 6000 TPD
Kiln feed Total (TPH)	403	403	403	403	404	405	405	405	405	405	405	404	405	400	399	407	409	412	412	410	409	410	409	410	400-410 tph
Kiln Coal FB (TPH)	8.0	7.9	8.0	7.7	7.7	7.7	7.8	7.8	7.8	7.8	7.8	7.8	7.9	7.9	8.2	7.6	7.4	7.5	7.3	7.5	7.4	7.5	7.5	7.5	7.0-8.0 tph
PC_FCoal_FB (TPH)	11.8	11.5	11.4	11.7	11.9	12.0	12.3	12.6	11.6	11.5	11.8	13.9	14.5	13.7	13.7	11.3	12.3	12.5	11.6	11.8	11.8	11.7	11.7	11.6	11-14 tph
Solid AFR (tph)	8.2	9.5	9.7	9.5	9.0	9.0	6.5	7.6	9.5	9.4	8.4	4.2	0.0	0.0	1.2	9.7	9.3	8.1	9.8	9.8	9.8	9.9	9.7	9.8	8-12 tph
Liquid AFR (kg/h)	608	553	612	683	578	185	-121	-120	-121	-121	-31	-8	-9	-9	340	1,839	881	876	791	872	943	904	842	798	500 - 800 kg/hr
KL_RPM_FB (rpm)	4.52	4.54	4.54	4.54	4.54	4.57	4.59	4.59	4.59	4.59	4.59	4.59	4.59	4.50	4.56	4.64	4.64	4.64	4.64	4.64	4.64	4.64	4.63	4.64	4.50-4.70 rpm
(L_MD_Cur (A)	637	659	685	652	638	662	662	646	651	641	628	632	659	626	644	632	606	624	639	654	641	635	616	635	560-650 Amps
Kiln Inlet Temp (oC)	1,121	1,126	1,131	1,110	1,117	1,125	1,123	1,119	1,121	1,117	1,111	1,102	1,114	1,110	1,122	1,111	1,103	1,111	1,108	1,122	1,113	1,121	1,115	1,118	1110-1150 deg C
KL_SA_T (C)	1,225	1,220	1,221	1,226	1,218	1,210	1,197	1,199	1,212	1,169	1,173	1,178	1,192	1,175	1,185	1,220	1,213	1,201	1,209	1,225	1,216	1,222	1,226	1,208	1190-1250 deg C
BZ temp (oC)	1,326	1,285	1,301	1,292	1,318	1,322	1,289	1,284	1,284	1,285	1,260	1,259	1,252	1,227	1,291	1,288	1,264	1,266	1,266	1,298	1,282	1,298	1,305	1,287	1200-1350 deg C
PH_Fan_RPM_FB (rpm)	910	910	910	910	910	910	910	910	906	905	905	904	899	896	900	909	905	907	910	910	910	910	910	910	900-915 rpm
PH_OL_Temp (Deg C)	306	308	309	308	307	307	307	308	308	307	308	308	308	308	309	310	310	310	307	308	308	306	307	309	300-315 deg C
PC Outlet gas temp avg (C)	885	887	889	883	879	880	879	879	880	882	880	874	882	888	884	883	876	875	874	872	872	872	873	874	870-890 deg C
Tertiary Air Temp (oC)	982	975	971	996	968	953	936	934	947	958	953	922	937	947	916	980	969	946	966	960	970	968	984	964	920-990 deg C
CLR Mid Air Temp (oC)	372	371	370	396	386	362	366	363	362	382	392	368	366	386	369	390	393	380	387	372	386	375	379	376	360-390 deg C
Hood draft PV (Pa)	-70	-72	-69	-71	-69	-75	-71	-70	-70	-70	-71	-70	-71	-70	-77	-70	-71	-70	-70	-71	-76	-80	-80	-81	-60 to -75 pa
Sp. Cooling Air (Nm3/kg Clk)	1.72	1.69	1.71	1.60	1.64	1.67	1.65	1.67	1.67	1.66	1.63	1.66	1.67	1.62	1.69	1.66	1.65	1.64	1.62	1.68	1.64	1.65	1.65	1.62	1.63 - 1.70 nm3/kg clk
Cooler Grate SPM FB (SPM)	19.60	19.60	19.60	19.61	19.61	19.61	19.60	19.61	19.61	19.61	19.61	19.61	19.60	18.55	18.21	21.48	21.61	21.61	21.61	21.61	20.77	19.61	19.60	19.61	18 - 20 spm

SMART MODULES

Performance Enhancement & Assurance Modules

Key Indicators	Unit Operations	Interventions	Collaboration	AI_ML Models	Data Analytics
Performance Indicators	Live Screen	Holtec Observations	Service Records	AFR & Raw Mix Optimization*	Data Matrix
Process Indicators	Graphical Correlations	Holtec Recommendations	Review Meetings	Al Kiln Predictor*	Real-Time Heat Balance
Quality Indicators	Brg. Temp / Vib. Monitoring		Plant Communications	AI Cyclone Jamming Predictor	Variables Deviation*
	Operations Review		Plant Reports	Al Blaine Predictor	Al Supported Cause Analysis*
				AI Strength Predictor	Fault & Downtime Analysis*
				Al Maintenance Predictor*	

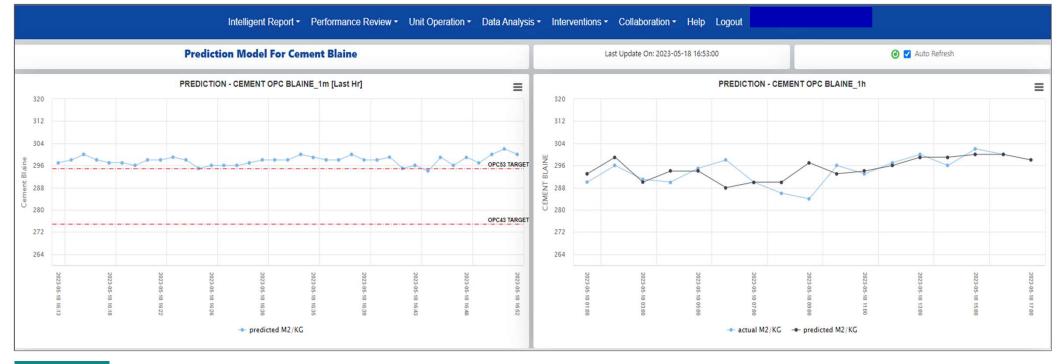
OPERATION DASHBOARDS


- Role-based Dashboards
 - Visible to Plant & Head office team from their offices, mobile devices, etc.
 - Can immediately share what issues they are seeing, with other team members, including in the CCR

Holtec team sees the same data

- Analyses it proactively
- Shares recommendations with the Plant team

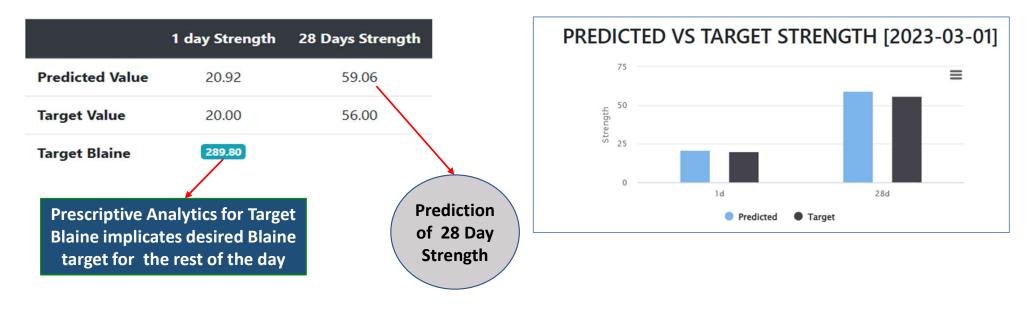
AI FORECASTING MODELS



Benefits

- Deep Learning Models for 'Kiln Operation' & 'Cyclone Jamming' forecasting in advance
- Preventing Kiln Down Condition can avoid Kiln Feed loss to the extent of ~1.6%
- Further, through early detection of Cyclone Jamming, chances of losing Production (~1.5%) can be avoided, for a single instance

AI BLAINE PREDICTION


Benefits

- Advance Prediction of Blaine and initiate proactive actions to reduce variability in Operation & Quality
- ~1.5% improvement in Productivity and ~1.0% reduction in Sp. Power consumption is foreseen
- Learning the 'Best Operating Practice' from the data generated

AI CEMENT STRENGTH PREDICTION

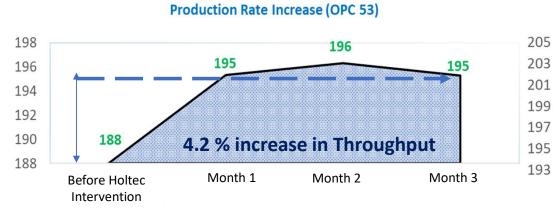
EMENT STREM	NGTH PREDICTION	J					
oduct Type: OPC 53	✓ Sample Frequency: 12 Ho	urs V Target Strength 1day: 20		arget Strength 28day: 5	56	Sample Date: 202	3-03-01
1.5	CaO: 63	Na2O: .15	SO3: 2.5	Blaine:	300	+45 Micron: 11	Predict

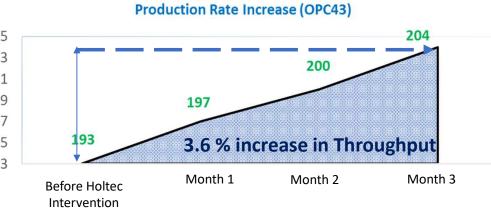
Benefits

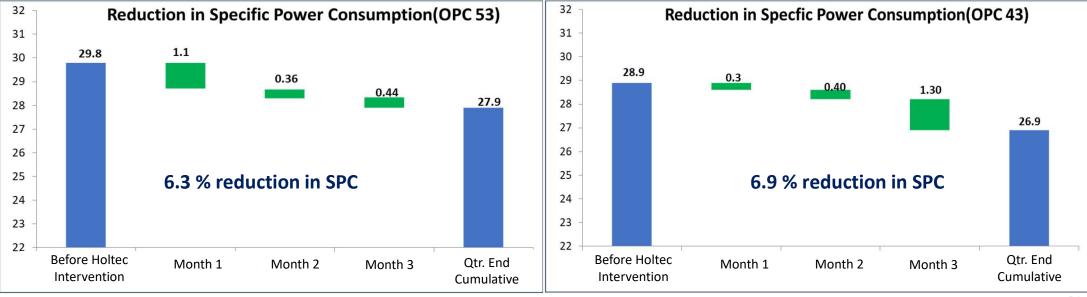
- An early Prediction of Cement Strength (1D/28D) helps in identifying the quality of cement, in advance
- Reduces the probability of delivering Lower / Excess quality of cement, going into the market

CASE STUDIES

ACHIEVEMENTS : PLANT A (PPC GRINDING)


During the collaborative association, the benefits achieved over the period is mentioned as below:


Parameters	Operating	Baseline	Achieved
Grinding SPC [kWh/t]	26.6	25.8 (3%) 👢	24.2 (9%) 🛛 👢
Clinker Factor	0.624	0.612 (2%) 👢	0.615 (1.45%) 👢
Throughput [tph]	243	253 (4%) 1	249 (2.5%) 1

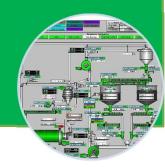

Reference Variables	Initial	Final
Fineness @ R45 [%]	7.5	7.1
Strength @1D [Mpa]	13.5	14.4

ACHIEVEMENTS : PLANT B (OPC GRINDING)

BENEFITS OF HOLTEC OPA AND AI SERVICES

Operational Efficiency & Sustainability

- Process Stability
- Overall Energy Efficiency
- Consistency in Product Quality
- Cost optimization
- Exposure to technical developments
- Customized application


Improvement measures based on 'Online Data' evaluation

- Real time consulting solutions
- Risk free implementation
- Implementations, based on HOLTEC's design, engineering & operational capabilities

Improvements based on Deep-Data Analytics

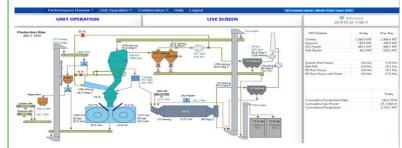
HOLTEC Intervention

VALUE PROPOSITION THROUGH IMPLEMENTATION OF AI

Within Existing System Infrastructure

System KPI Improvement	System Throughput increase by 3-5%
	Specific Power Consumption reduction by 4-6%
	Specific Heat Consumption reduction by 1-2%
	Clinker Factor reduction by 0.5-1.0%
	AFR enhancement
	Reduction in Carbon Footprints
Maintaining Sustainability	Prediction Models for Time-Lag Variables
	Forecasting Models for Key Impacting Variables

Wherever Capex/ Significant Modifications are Required, HOLTEC Engineering Team Can Work Closely with the Client Team to Design & Implement Optimal Solutions



CLIENT ACCESSIBLE ONLINE PLANT INFORMATION SYSTEM

Online Plant Analytics System is a mobile-enabled, secure platform that enables HOLTEC & it's OPA Customers to:

- View running & historical Plant data (from minutes to years), assess
 Plant KPIs using Trends & Charts
- Monitor, analyse & correlate relevant variables to keep track of complete plant operations
- View all improvement interventions made by HOLTEC & Client and the results thereof
- Track communication exchanged between HOLTEC & the Client during the process of engagement.
- Employ a host of other system features to facilitate operational transparency & enable improved performance-related decision making by Plant personnel

UNIT OPERATION: LIVE SCREEN

UNIT OPERATION: CURRENT OVERVIEW

Perform							
	UNIT C	PERATION		CURR	ENT OVERVIEW		 Ratreshad 10-03-14 17:57:58
Runnie	ng Hrs.	Product	lion Rate	Sp. Power Const	imption	Producti	on
Run Time	17.95	Current Rate	270.9 -===	Current Sp. Power	22.14 cent	Cumulative Production	4,038 -
Clock Time	17.97	Cumulative Rate	224.8 im	Cumulative Sp. Power	24.20 una	Expected Production	5.294 -
18 Bran Hours (Hes)	25 E	24.8 ²⁰ as Nate (TPHs	24.2 International State	4040 mm Cement Prosuction atty		3.1 20 200 1 Level (70)	4 JF
Rust Hours (Hrs)	25 E	nu Hala (TPH)			Coment	20.	
Run Hours (Hrs) Equipme	Dimate	nu Hala (TPH)	Cumulative Sp. Prever (XWM)	Convert Production (MT)	Coment	Sito 1 Lavati (mit)	
Run Hours (Hrs) Equipme Sepol	ant Speed	ns Rate (TPH)	Consumption	Cenert Production dato	aption	20 TLevel (mt) Cer	tailts
Run Hours (His) Equipme Sepol Sepol Fan	comus nt Speed	Ana Rate (1794) Rave Material Clinker	Consumption 2,464 or	Cenent Production dath Cenent Production dath Power Consum RP Fixed Roller	option 1,232 vv	20 1 Level (mb) Cer Other Det Dypass Damper	uils 07 s
Run Hours (Hrs)		Aus Rate (TPHS Raw Material Clinker Gyptum	Consumption 2,464 in 305 or	Cenert Production (dT) Power Consum RP Fixed Roller RP Movable Roller	1,232 vs 1,138 vs	Sen 1 Level (789) Cen Other Der Bypass Damper RP Bin Level	67 s

PERFORMANCE REVIEW: OVERVIEW: DASHBOARD VIEW

← → O @ 0 192.168.202.7/00			offine panel			- A 7	1	13
Performance Review * Unit	- 1			Logout		JR Centent Joars Mode-Test User: SUD		
Overview *		shhoard						
Productivity Performance =	-	bomatic	(law)	DASHBOARD		2019-04-25 04:07:17 pm		
Overall Perfor Reliability Performance -	Por		Quality Co					
Unit Operatic Enhancing Performance =	Bal	ENSII 🗧	Separator • Far	Material Handling Bi	ns & Stot	age		
System Performance Over Time *	Qu	ality	Maintenance . MI	5				
egend AL/Close To Target Potential For improve	ment:	High Pot	etial for improvement					
BODUCTIVITY			RELIABILITY			QUALITY CONTROL		
RODOCITI	LAST	MTD	RECIACITI	LAST	MTD	dought control	LAST	MT
roduction Rate (tph)		238.9	Run Time (Hrs)	0.0	225.0	Cement Residue 45m (%)	7.4	7.
arinding Specific Power (kWh/t)		24.5	Net Availability Inde	× (%)	86.1	Cement Blaine (m2/kg)	343.1	343.
linker (%)		61.3	Productivity Factor (1	5)	93.8	Cement Strength 1D (MPa)	15.0	14
Dry Fly Ash (%)		27.6	Reliability Factor (%)		97.5	Cement Lime (%)	42.0	- 41
Sement Production (MT)	0	53,788	Utilization Factor (%)		58.6	DFA Blaine (m2/kg)	296.3	294
			Overall Equipment El	fficiency (%)	80.6	WFA Moisture (%)	17.0	16
PECIFIC POWER CONSUMPTION (kWh/1)		_	UNIT CONSUMPTIO			RAW MATERIAL CONSUMPTION (MT)		
	LAST	MTD		LAST	MTD	LAST		MIT
tali Mill		9.0	Fixed Roller		236,376	Clinker 6		32,97
and Roller		4.3			225,889	Gypsum 0		3,77
tousble Roller			Ball Mill	0		Dry Fly Ash 0		14.81

APPLICATION OF AI/ML & ITS ADVANTAGE : PRESENT & FUTURE

- Various AI based Prediction models are being developed to address the <u>Sustainability of key Operating Variables</u>, <u>which otherwise are not readily available</u> like Cement Blaine, Cement Strength, Clinker Free lime, AFR maximization & Optimizing raw mix design, etc.
- Similarly, AI based Forecasting models address the <u>expected changes in system parameters in advance</u>, which <u>otherwise may result into process disturbances</u>, if not addressed on time. For e.g. Cyclone Jamming, Kiln and Cooler Operating Condition, etc.
- AI/ML based Variable Deviation models would help in <u>identifying the Cause of Deviation on Real-Time and</u> <u>implementing corrective measures</u>. For e.g. High PH Outlet Temp, Low SA Temp, Low BZ Temp, etc.
- AI/ML based Optimization Tools helps in Optimizing the Cost of Raw materials & Fuels, along with maximizing TSR and an advanced prediction of clinker quality, to ensure sustainable operation.
- AI based Information Retrieval mechanism to <u>access Plant operation and maintenance guide, equipment manuals</u>, etc., by using RAG and LLMs

HOLTEC's vision towards <u>Plant Performance Enhancement includes implementation of the above AI/ML models</u>, which are being developed based on specific improvement needs and are tailor made, based on plant specific conditions.

To achieve <u>Sustainability in Operation</u> and to <u>reduce the Cost of Production</u>, application of AI would certainly be at the center-stage in the coming time.

CONTACT INFORMATION

Holtec Consulting Pvt Ltd HOLTEC CENTRE A Block, Sushant Lok-I Gurgaon 122001, India

+91 124 4047900 studies@holtecnet.com www.holtecnet.com