

- Created in year 1967
- Services firm focused on the Global Cement Industry: Advisory, Engineering, Plant Operations & Maintenance, Solutions

Also offer services in Highways, Power & Engineering Support Services

- 4,500+ assignments for 1,000+ clients in 90+ countries
- Full fledged engineering and business consulting firm
- Strong execution processes (ISO certified)
- Total Solutions: Integrated service from concept through commissioning and operations
- Industry expertise with 6,500 man-years experience
- Extensive database built over 50+ years
 Offices: 3 in India, 1 in UAE (Sharjah) and various other site offices

HOLTEC's Width and Depth of Experience

<u>Highlights</u>

Engineered over 100 large-sized projects, greenfield and brownfield; 20+ with kiln capacities of >8,000 tpd and 30+ with kiln capacities of 6,000-8000 tpd

Successfully executed 165+ Mine Optimisation projects world wide

Why Short Term Mine Optimization?

Long Term Mining Plans, while having their own use, cannot dynamically/speedily respond to the issues mentioned above

What it does?

- Use of real time data and advanced analytics to make informed decisions
- Scheduling for optimal resource extraction
- Steady supply of homogenized material
- Adapting to change in quality requirements without affecting production
- Regular and continuous updation of deposit inventory on short term basis
- Savings in cost by use of optimized layout and avoidance of expert visits

Methodology

- Step-1 Data verification/Processing
- Step-2
 Preparation of Sections
- Step-3 Geological Modeling
- Step-4 Data Compositing
- Step-5
 Data Evaluation
- Step-6
 Block Modeling
- Step-7
 Pit Formation
- Step-8
 Reserves Estimation
- Step-9
 Mine Optimization
- Step-10
 Mine Scheduling

Methodology

Tools

General Information

1480

- Deposit belongs to a cement plant located in North Africa.
- The rock types encountered in the area are Marl, Marginal Grade Limestone, High Grade Limestone and Gypsum.

Deposit Evaluation

Chemical Characteristics

Rock Type	Resource	Quality								LSF		
(mio t)		LOI	SiO ₂	AI ₂ 0 ₃	Fe ₂ 0 ₃	CaO	MgO	K ₂ 0	Na ₂ 0	SO ₃	CI	LƏF
Mari	81.89	31.66	17.76	4.79	2.30	36.53	1.98	1.16	0.03	0.91	0.01	64
Limestone	108.58	37.80	8.16	1.30	1.06	47.02	1.08	0.35	0.16	0.91	0.01	188

- Marl : Overlying limestone, highly heterogeneous and low grade.
- Limestone : Heterogeneous marginal grade overlies 30 m thick bottom high grade
- Use of marl to the extent possible to achieve:
 - > Lower Stripping Ratio
 - > Longevity of deposit life
 - > Low cost of production

Optimization

Description	Sample				
Global Optimization	Output				
 Mining Constraints Optimal utilization of marl & marginal grade limestone Maximum permissible limit of SO₃ Minimum Rejection Lead distance to minimize the cost 	Impact of Rawmix LSF on Reserves 2.00 125 125 125 125 125 125 125 125				
 Inputs Required Block Model RoM/ Raw mix parameter Cost data for Drilling, Blasting 	Impact of SO3 on Reserves 4.0 3.5 3.0 2.5 9 9 9 9 9 9 9 9 9 9 9 9 9				

Optimization (contd.)

<u>Salient Aspects</u>

- Optimised Reserves : 137 mio t against 89 mio t (LSF-98.0)
- Reserves enhanced by optimization of low grade marl and it is possible to optimize about 48 mio t of marl in the process
- The second secon
- SR has a positive impact on reserves i.e., reserves enhance with increase in SR up to a maximum value of 2.5
- ${\ensuremath{\,\odot}}$ Increasing AR up to 1.5 and maintaining SO_3 up to 0.90 in the raw mix resulted in enhancement of reserves

By optimization there is a saving of approx. 2.10 mio USD per annum just by reduction in rejection. The additional life further adds to the saving over additional 16 years.

Long term Scheduling

- Schedule is prepared considering the following objectives:
 - > Optimal utilisation of marl, marginal grade limestone and high grade limestone
 - > Maintaining average OB ratio within a block of 5 years
 - > Optimal lead from mine face to crusher and dump area
- During 5 year plan, it is proposed to work in two pits to optimise quality parameter and take advantage of profile to expose high grade limestone
- Yearly Planning is done
- The schedule has lead to flexibility in mining, lead balancing, minimized frequent shifting of HEMM

Short term Scheduling

Due to heterogeneity in quality, two blocks, namely Eastern and Western Blocks are made ready for production

Blasthole sampling with their geo coding is being done regularly and sent to Holtec.

Eastern Block						Western Block				
	SiO ₂	Al ₂ O ₃	Fe ₂ 0 ₃	CaO	SO ₃	SiO ₂	AI ₂ 0 ₃	Fe ₂ 0 ₃	CaO	SO ₃
Avg.	11.39	2.64	1.35	46.94	0.39	17.55	4.75	2.32	36.70	0.26
Std. Dev.	3.40	1.20	0.94	4.72	0.21	4.70	1.27	1.28	5.04	0.18

- Eastern block is close to cement grade limestone
- Western block would require blending with high grade limestone

Both the blocks show high variability

Short term Scheduling (contd.)

Description

Monthly/Weekly Production Scheduling

- Weekly blast hole planning/ sequencing, Lead balancing and planning for micro mining constraints is being done
- Short Term blast modelling based on blast hole data and Geo coding of model for interactive use
- Scheduling with alternate production plan on weekly basis meeting pile requirement
- Equipment placement scheduling with monthly/weekly production and development need

Output

Sample

Inputs Provided

- > Blast Hole data
- > Pile parameter
- > Equipment position
- > Budget for the quarter

Short term Scheduling (contd.)

Short term Scheduling (contd.)

- > Address weekly pile quality maintenance
- Blast hole data is considered as base

Weekly Production & Equipment Scheduling Report

Location	Blast Nos	Bench	Type of Mati.	Qty of RoM		Quality						Remarks		
	NU3		mau.	(MT)	SiO2	AI2O3	Fe2O3	CaO	MgO	LOI	LSF	SR	AR	
B1/SE	554	1	RoM	18,000	9.86	1.85	1.15	45.35	2.20	38.98	148.5	3.29	1.61	Feed to Pile
B3/NW	1002	3	RoM	20,000	13.38	2.25	2.65	43.78	0.75	37.20	104.0	2.73	0.85	Standby

Month	Week	Type of M/c	M/c No	Capacity	Face	Qty. to be handled	Remarks
		Shovel	1	6.0 cum	B1/SE	18000 T	
April	1	Dumper	1,2,3	50 T	B1/SE	18000 T	
	-	Shovel	2	3.8 cum	B3/NW	Standby	

Feedback analysis

Description	Sample
 Model Validation Block Model was validated for continuous monitoring of predicted vs actual data based on feed back data Block model is validated 	Output Actual Vrs Predicted
Inputs Availed > Blast Hole data in terms of Quantity, Quality and Coordinates	Calculation of the second seco

Benefits

Benefits – Cement Plant in North Africa

Activity	Plant	HOLTEC	Benefits
Deposit Evaluation	 By simple classical method No deposit optimization 	 Evaluation by mining software Grade tonnage curve established 	 Establishment of reserves at different cut off grades
Optimization & Raw Mix Design	> Not done	 Sensitivity analysis for critical parameters and correctives carried out Optimized reserves estimated Marginal and low grade limestone used Use of correctives minimized 	 Enhancement of deposit life by 16 years Stripping ratio reduced from 1:1 to 1:0.25
Mine Planning	> Not done	> Detail mine design developed	 Facilitated in developing short term exploitation plan
Quarry Scheduling	> Not done	 Quarry scheduling for long term, short term Monthly schedules prepared 	 Improved resource utilization Enhanced decision making
Quarry Monitoring	 Only high grade limestone was being used 100 % drilling & blasting Marl was being rejected and dumped separately 	 Blast hole sample analysis evaluated Fortnightly schedules prepared Weekly exploitation plan for two working faces planned from HO Blending of marginal grade with high grade limestone on a continuous basis Marl used & thus dumping area reduced Drilling and blasting reduced to 70 % as marl is amenable to ripping Block Model validated and modified as and when required 	 Steady supply of homogenized limestone Minimized human dependency Maximum utilization of equipment Saving of USD 2.75 mio / annum

Benefits – Cement Plant in South Africa

Activity	Plant	HOLTEC	Benefits
Deposit Evaluation	> Not done	 Evaluation by mining software Grade tonnage curve established 	 Establishment of reserves at different cut off grades
Optimization & Raw Mix Design	> Not done	 Sensitivity analysis for MgO content carried out High and low MgO containing limestone optimally blended by maintaining desired LSF Use of correctives minimized 	 Enhancement of deposit life by 5 years Stripping ratio reduced from 1:2 to 1:1.12
Mine Planning	 Not done Mining limit at 860 m AMSL 	 Detail mine design developed Mining limit at depth increased to 800 m MSL 	 Enhancement in reserves and flexibility of mining
Quarry Monitoring	Only high grade limestone was being used	 Blasthole sample analysis evaluated Weekly exploitation plan for two working faces planned from HO Blending of high and low MgO containing limestone done Block Model validated and modified as and when required 	Saving of USD 0.25 mio / annum

Benefits – Cement Plant in India

Activity	Plant	HOLTEC	Benefits
Optimization & raw mix design	> Use of High grade limestone	 Blending of high Iron containing limestone Use of correctives minimized 	 Enhancement of deposit life by 5 years Stripping ratio reduced from 1:0.33 to 1:0.11
Mine Planning	 Not done Mining limit at depth 26 m AMSL 	 Detail mine design developed Mining limit increased to (-)12 m AMSL 	> Enhancement in reserves by 30 mio t and flexibility of mining
Quarry Monitoring	 Only high grade limestone being used SR at 2.1 and AR at 1.2 High Sulpur limestone being rejected High Stripping ratio of 1:0.33 	 Blasthole sample analysis evaluated Blending of high iron containing limestone with low iron containing limestone Recommended and implemented changed SR and AR Stripping Ratio reduced to 1:0.11 High Sulphur limestone optimally blended with low sulphur limestone Block Model validated and modified based on blasthole data as and when required 	> Saving of USD 0.24 mio/ annum

Raw Material Services

Rich global consulting experience in > 750 assignments
 Customized Mine Optimization Software

Contact Information

Holtec Consulting Pvt Ltd Holtec Centre A Block, Sushant Lok-I Gurgaon 122001, India

+91 124 4047900

info@holtecnet.com

www.holtecnet.com