THE PERFORMANCE AND POTENTIAL OF THE INDIAN CEMENT MARKET

Jagdeep Verma Holtec Consulting, India

Bangkok 2013

b India

Current Industry Structure

Effective capacity refers to the actual supplying capability of the plants, installed capacity for FY 13 is estimated to be 368 mio tpa.

Future Demand-Supply

Supply Capability assumed static at FY 17 level of 446 mio t

Demand

Supply Capability

*Refers to domestic supply (net of exports), assuming supply for any capacity added as 50% in Yr 1 & 100% from Yr2 onwards and Cap. Util. of 90%.

After trailing potential supply between FY 13 – FY 19, demand could again exceed supply in FY 20, if fresh capacity expansion is not planned earlier.

Plant Clusters

Capacity Utilization Vs Price

Simulated Price Forecasts

Prices in past have grown at a CAGR of 5-7% pa. Prices in USD per t 500 152 140 450 126 400 **USD** 90/t 115 350 383 per bag 297 359 272 335 300 229 236 244 243 313 R 250 Future 206 **Projections** 141 154 164 200 CAGR 6-7% under 138 150 Most Likely Scenario 100 FY04 FY05 FY06 FY06 FY08 FY10 FY11 FY13 FY13 FY13 FY13 FY15 FY15 FY15 FY16 FY18 FY03 ----- Past Price **Optimistic** Pessimistic **Most Likely**

After Demand – Supply gap, rising input materials' prices are seen to have the most significant impact on Cement Price

- CAPEX for Capacity Creation
 - Availability of Input Materials
- Price Indices
 Differential Costs of

Neliverv

Changes in Product Mix

- ✓ Indian cement industry deploys the best of the technologies available.
- ✓ In many cases, India has been in the forefront to adopt latest technologies.
- ✓ Use of technology is reflected in terms of energy consumption, kiln productivity, operating hours/ year, pollution control levels, etc.
- \checkmark Some of the technological developments are:
 - **Developments in Unit Operations: Improvements in the area of** mining, crushing, raw material grinding and pyro processing.
 - Developments in other areas of Plant Technology & Operation like Automation, Instrumentation & Plant Control Systems, Material Handling System, Integrated Quality Assurance System, Energy Efficiencies, Use of Alternate Fuels, etc

Equipment Supply

Section	Equipment	Suppliers
Raw Mill	VRM (Vertical Roller Mill)	Gebr Pfeiffer, ThyssenKrupp, Loesche, FL Smidth
	CCBM (Closed Circuit Ball Mill)	Enexco, Humboldt, ThyssenKrupp, Christian Pfeiffer, Promac, FL Smidth, Sinoma
	RPBM (Roller Press Ball Mill)	FL Smidth, Humboldt, ThyssenKrupp
	RP (Roller Press)	FL Smidth, Humboldt, ThyssenKrupp
Coal Mill	VRM (Vertical Roller Mill)	Gebr Pfeiffer, ThyssenKrupp, Loesche, FL Smidth
Cement Mill	VRM (Vertical Roller Mill)	Gebr Pfeiffer, ThyssenKrupp, Loesche, FL Smidth
	CCBM (Closed Circuit Ball Mill)	Enexco, Humboldt, ThyssenKrupp, Christian Pfeiffer, Promac, FL Smidth, Sinoma
	RPBM (Roller Press Ball Mill)	FL Smidth, Humboldt, ThyssenKrupp
	RP (Roller Press)	FL Smidth, Humboldt, ThyssenKrupp
Pyro Section	Main Machinery	FL Smidth, Humboldt, ThyssenKrupp, IKN Engineering, Sinoma

Critical equipments like main gear box, kiln burners, analyzers are imported, rest are made in

Market Position of Cement Players

Limestone Reserves

Residual Limestone Reserves

INTERCEM

- ----Case I : Current product mix with current limestone reserve
- ---Case II : Current product mix with increased exploitable limestone

-----Case - III : Case II with 100% blended cement beyond 2017

----Case - IV : Case III with lower demand growth

Fuels and Additives

FUELS

- Coal rich states are Madhya Pradesh, Chhattisgarh, Jharkhand, Orissa, North East, Maharashtra, Andhra Pradesh.
- Indian Cement industry uses > 25% imported coal. Usage of imported coal expected to increase, especially in coastal regions.
- ✓ Alternate fuels expected to receive enhanced attention in future. Present Alternative Fuel usage in India is 2,00,000 tpa i.e. thermal substitution of approx 1%.
- ✓ Alternative Fuels used in India are Biomass, Hazardous Waste, Residue Derived Fuel (RDF), Used Tyres and Industrial Plastic Waste.
- Total installed capacity of coal based TPS in India is ~ 92,000 MW i.e. ~100 mio tpa of fly ash generation. ~40 mio tpa of fly ash is currently utilized by the cement industry.
- An additional 80 mio tpa of fly ash is expected to be available by 2015 against an incremental requirement of approximately 20 mio tpa.
- Current slag generation is ~13 mio tpa & ~9 mio tpa is utilized by the cement industry.
- \checkmark An additional 10-12 mio tpa of slag could be available by 2015 as against an

Operating Costs

Unit operating costs (PPC) to increase by about ~50% over the period

Investment & Returns

- ~ 45 new clinker capacities to be between 6 10 k tpd/ lines.
- \sim 25 new split units with capacities between 1 4 Mio tpa.
- Raw Materials & Fuel characteristics to dictate choice of technology.
- Alternate fuels to receive enhanced attention.
- Coastal locations to be increasingly favoured for split units.
- Bulk cement sales to increase from 15 to 35 mio tpa and road despatches from around 170 to 200 mio tpa.
- Ready mix consumption to increase from 7 % to 15 % of total concrete.
- Energy consumption to fall to 670 kcal/ kg clinker and 70 kwh/ t of OPC.
- Adoption of global cement nomenclature and standards.
- Stricter statutory interventions in the utilisation of diminishing resources, environmental control and customer safeguards.
- Significant increase foreseen in carbon trading.

- Favorable Demand-Supply balance by FY 19/20: Demand is likely to overtake supply in next 6-7 years. Typically, plant commissioning can take 5-6 years from planning stage; now is the time to plan to take advantage of forthcoming deficit situation.
- ✓ Limestone paucity: Limestone resources are limited and valuable.
- Growing demand: India has immense growth potential. The future of cement market is likely to remain buoyant in medium to long term.
- Capacity Utilization: Present industry capacity utilization is at ~70%; this is likely to start improving in coming years.
- Price: Prices have held up, despite lower capacity utilisation. This is likely to continue even in the future.

Currently, industry is bottoming out and likely to start improving in next 1-2 years.

The Challenges of Tomorrow

- Dwindling Natural Resources : Limited limestone, fossil fuel and water resources. The life of cement grade limestone reserves is estimated to be around 40 years more.
- Increasing Costs: Energy efficiencies, equipment availability and input material costs have been the major focus areas for cost reduction in the past. However, recently freight (both inwards and outwards) has also become a focus point.
 - The potential also exists for reducing costs in non-equipment related domains, e.g. material inventories, consumable consumption rates, financial expenses, etc.
- Fuel Shortage: Given the acute shortage of domestic coal and high cost of imported coal, alternate fuels could provide 7-10 % of the total thermal fuel requirements by FY16.
- Increase in Gestation Period: The gestation period in the future is likely to be in the range of 5-7 years, due to prolonged pre-project activities like Land acquisition and statutory clearances.

Inductry players could attempt to bring down extual construction time by

Web :	www.holtecnet.com
E-Mail :	studies@holtecnet.com
Address :	Holtec Centre, A Block Sushant Lok, Gurgaon 122001 - India
Telephone : Facsimile :	+91 - 124 - 2385095, 4047900 +91 - 124 - 2385114, 2385116

Thank you